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RoBA Multiplier: A Rounding-Based Approximate
Multiplier for High-Speed yet Energy-Efficient

Digital Signal Processing
Reza Zendegani, Mehdi Kamal, Milad Bahadori, Ali Afzali-Kusha, and Massoud Pedram

Abstract— In this paper, we propose an approximate
multiplier that is high speed yet energy efficient. The approach
is to round the operands to the nearest exponent of two.
This way the computational intensive part of the multiplication
is omitted improving speed and energy consumption at the price
of a small error. The proposed approach is applicable to both
signed and unsigned multiplications. We propose three hardware
implementations of the approximate multiplier that includes one
for the unsigned and two for the signed operations. The efficiency
of the proposed multiplier is evaluated by comparing its perfor-
mance with those of some approximate and accurate multipliers
using different design parameters. In addition, the efficacy of
the proposed approximate multiplier is studied in two image
processing applications, i.e., image sharpening and smoothing.

Index Terms— Accuracy, approximate computing, energy
efficient, error analysis, high speed, multiplier.

I. INTRODUCTION

ENERGY minimization is one of the main design require-
ments in almost any electronic systems, especially the

portable ones such as smart phones, tablets, and different
gadgets [1]. It is highly desired to achieve this minimiza-
tion with minimal performance (speed) penalty [1]. Digital
signal processing (DSP) blocks are key components of these
portable devices for realizing various multimedia applications.
The computational core of these blocks is the arithmetic logic
unit where multiplications have the greatest share among all
arithmetic operations performed in these DSP systems [2].
Therefore, improving the speed and power/energy-efficiency
characteristics of multipliers plays a key role in improving the
efficiency of processors.

Many of the DSP cores implement image and video process-
ing algorithms where final outputs are either images or videos
prepared for human consumptions. This fact enables us to
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use approximations for improving the speed/energy efficiency.
This originates from the limited perceptual abilities of human
beings in observing an image or a video. In addition to the
image and video processing applications, there are other areas
where the exactness of the arithmetic operations is not critical
to the functionality of the system (see [3], [4]). Being able
to use the approximate computing provides the designer with
the ability of making tradeoffs between the accuracy and the
speed as well as power/energy consumption [2], [5].

Applying the approximation to the arithmetic units can
be performed at different design abstraction levels including
circuit, logic, and architecture levels, as well as algorithm
and software layers [2]. The approximation may be performed
using different techniques such as allowing some timing viola-
tions (e.g., voltage overscaling or overclocking) and function
approximation methods (e.g., modifying the Boolean function
of a circuit) or a combination of them [4], [5]. In the category
of function approximation methods, a number of approximat-
ing arithmetic building blocks, such as adders and multipliers,
at different design levels have been suggested (see [6]–[8]).

In this paper, we focus on proposing a high-speed low-
power/energy yet approximate multiplier appropriate for error
resilient DSP applications. The proposed approximate mul-
tiplier, which is also area efficient, is constructed by mod-
ifying the conventional multiplication approach at the algo-
rithm level assuming rounded input values. We call this
rounding-based approximate (RoBA) multiplier. The proposed
multiplication approach is applicable to both signed and
unsigned multiplications for which three optimized archi-
tectures are presented. The efficiencies of these structures
are assessed by comparing the delays, power and energy
consumptions, energy-delay products (EDPs), and areas with
those of some approximate and accurate (exact) multipli-
ers. The contributions of this paper can be summarized
as follows:

1) presenting a new scheme for RoBA multiplication by
modifying the conventional multiplication approach;

2) describing three hardware architectures of the pro-
posed approximate multiplication scheme for sign and
unsigned operations.

The rest of this paper is organized as follows. Section II
discusses the related works about approximate multipliers. The
proposed scheme of the approximate multiplication, its hard-
ware implementations, and its accuracy results are presented
in Section III. In Section IV, the characteristics of the pro-
posed approximate multiplier compared with the accurate and
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approximate multipliers, and also its effectiveness in image
processing applications are studied. Finally, the conclusion is
drawn in Section V.

II. PRIOR WORKS
In this section, some of the previous works in the field of

approximate multipliers are briefly reviewed. In [3], an approx-
imate multiplier and an approximate adder based on a tech-
nique named broken-array multiplier (BAM) were proposed.
By applying the BAM approximation method of [3] to
the conventional modified Booth multiplier, an approximate
signed Booth multiplier was presented in [5]. The approximate
multiplier provided power consumption savings form 28% to
58.6% and area reductions from 19.7% to 41.8% for different
word lengths in comparison with a regular Booth multiplier.
Kulkarni et al. [6] suggested an approximate multiplier con-
sisting of a number of 2 × 2 inaccurate building blocks that
saved the power by 31.8%–45.4% over an accurate multiplier.

An approximate signed 32-bit multiplier for speculation
purposes in pipelined processors was designed in [7]. It was
20% faster than a full-adder-based tree multiplier while having
a probability of error of around 14%. In [8], an error-tolerant
multiplier, which computed the approximate result by dividing
the multiplication into one accurate and one approximate part,
was introduced, in which the accuracies for different bit widths
were reported. In the case of a 12-bit multiplier, a power saving
of more than 50% was reported. In [9], two approximate 4:2
compressors for utilizing in a regular Dadda multiplier were
designed and analyzed.

The use of approximate multipliers in image processing
applications, which leads to reductions in power consumption,
delay, and transistor count compared with those of an exact
multiplier design, has been discussed in the literature. In [10],
an accuracy-configurable multiplier architecture (ACMA) was
suggested for error-resilient systems. To increase its through-
put, the ACMA made use of a technique called carry-in
prediction that worked based on a precomputation logic.
When compared with the exact one, the proposed approximate
multiplication resulted in nearly 50% reduction in the latency
by reducing the critical path. Also, Bhardwaj et al. [11]
presented an approximate Wallace tree multiplier (AWTM).
Again, it invoked the carry-in prediction to reduce the critical
path. In this work, AWTM was used in a real-time benchmark
image application showing about 40% and 30% reductions in
the power and area, respectively, without any image quality
loss compared with the case of using an accurate Wallace tree
multiplier (WTM) structure.

In [12], approximate unsigned multiplication and division
based on an approximate logarithm of the operands have
been proposed. In the proposed multiplication, the summation
of the approximate logarithms determines the result of the
operation. Hence, the multiplication is simplified to some
shift and add operations. In [13], a method for increasing the
accuracy of the multiplication approach of [12] was proposed.
It was based on the decomposition of the input operands. This
method considerably improved the average error at the price
of increasing the hardware of the approximate multiplier by
about two times.

In [16], a dynamic segment method (DSM) is presented,
which performs the multiplication operation on an m-bit
segment starting from the leading one bit of the input operands.
A dynamic range unbiased multiplier (DRUM) multiplier,
which selects an m-bit segment starting from the leading one
bit of the input operands and sets the least significant bit of
the truncated values to one, has been proposed in [17]. In this
structure, the truncated values are multiplied and shifted to
left to generate the final output. In [18], an approximate 4 × 4
WTM has been proposed that uses an inaccurate 4:2 counter.
In addition, an error correction unit for correcting the outputs
has been suggested. To construct larger multipliers, this 4 × 4
inaccurate Wallace multiplier can be used in an array structure.

Most of the previously proposed approximate multipliers
are based on either modifying the structure or complexity
reduction of a specific accurate multiplier. In this paper, similar
to [12], we propose performing the approximate multiplication
through simplifying the operation. The difference between our
work and [12] is that, although the principles in both works
are almost similar for unsigned numbers, the mean error of
our proposed approach is smaller. In addition, we suggest
some approximation techniques when the multiplication is
performed for signed numbers.

III. PROPOSED APPROXIMATE MULTIPLIER

A. Multiplication Algorithm of RoBA Multiplier

The main idea behind the proposed approximate multiplier
is to make use of the ease of operation when the numbers
are two to the power n (2n). To elaborate on the operation
of the approximate multiplier, first, let us denote the rounded
numbers of the input of A and B by Ar and Br , respectively.
The multiplication of A by B may be rewritten as

A × B = (Ar − A) × (Br − B) + Ar × B

+ Br × A − Ar × Br . (1)

The key observation is that the multiplications of Ar × Br ,
Ar ×B , and Br × A may be implemented just by the shift oper-
ation. The hardware implementation of (Ar − A) × (Br − B),
however, is rather complex. The weight of this term in
the final result, which depends on differences of the exact
numbers from their rounded ones, is typically small. Hence,
we propose to omit this part from (1), helping simplify the
multiplication operation. Hence, to perform the multiplication
process, the following expression is used:

A × B ∼= Ar × B + Br × A − Ar × Br . (2)

Thus, one can perform the multiplication operation using
three shift and two addition/subtraction operations. In this
approach, the nearest values for A and B in the form of 2n

should be determined. When the value of A (or B) is equal
to the 3 × 2p−2 (where p is an arbitrary positive integer
larger than one), it has two nearest values in the form of
2n with equal absolute differences that are 2p and 2p−1. While
both values lead to the same effect on the accuracy of the
proposed multiplier, selecting the larger one (except for the
case of p = 2) leads to a smaller hardware implementation
for determining the nearest rounded value, and hence, it is
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Fig. 1. Block diagram for the hardware implementation of the proposed multiplier.

considered in this paper. It originates from the fact that the
numbers in the form of 3 × 2p−2 are considered as do not
care in both rounding up and down simplifying the process,
and smaller logic expressions may be achieved if they are used
in the rounding up.

The only exception is for three, which in this case, two is
considered as its nearest value in the proposed approximate
multiplier.

It should be noted that contrary to the previous work
where the approximate result is smaller than the exact result,
the final result calculated by the RoBA multiplier may be
either larger or smaller than the exact result depending on
the magnitudes of Ar and Br compared with those of A and
B , respectively. Note that if one of the operands (say A) is
smaller than its corresponding rounded value while the other
operand (say B) is larger than its corresponding rounded value,
then the approximate result will be larger than the exact result.
This is due to the fact that, in this case, the multiplication result
of (Ar − A) × (Br − B) will be negative. Since the difference
between (1) and (2) is precisely this product, the approximate
result becomes larger than the exact one. Similarly, if both A
and B are larger or both are smaller than Ar and Br , then the
approximate result will be smaller than the exact result.

Finally, it should be noted the advantage of the proposed
RoBA multiplier exists only for positive inputs because in
the two’s complement representation, the rounded values of
negative inputs are not in the form of 2n . Hence, we suggest
that, before the multiplication operation starts, the absolute
values of both inputs and the output sign of the multiplication
result based on the inputs signs be determined and then the
operation be performed for unsigned numbers and, at the
last stage, the proper sign be applied to the unsigned result.
The hardware implementation of the proposed approximate
multiplier is explained next.

B. Hardware Implementation of RoBA Multiplier

Based on (2), we provide the block diagram for the hardware
implementation of the proposed multiplier in Fig. 1 where
the inputs are represented in two’s complement format. First,
the signs of the inputs are determined, and for each negative
value, the absolute value is generated. Next, the rounding block
extracts the nearest value for each absolute value in the form
of 2n . It should be noted that the bit width of the output of
this block is n (the most significant bit of the absolute value
of an n-bit number in the two’s complement format is zero).
To find the nearest value of input A, we use the following

equation to determine each output bit of the rounding block:
Ar [n−1] = A[n−1] · A[n−2] · A[n−3]

+ A[n−1] · A[n − 2]
Ar [n−2] = (A[n−2] · A[n−3] · A[n−4]

+ A[n−2] · A[n − 3]) · A[n − 1]
...

Ar [i ] = (A[i ] · A[i −1] · A[i −2]+ A[i ] · A[i −1]) ·
n−1∏

i=i+1

A[i ]
...

Ar [3] = (A[3] · A[2] · A[1] + A[3] · A[2]) ·
n−1∏

i=4

A[i ]

Ar [2] = A[2] · A[1] ·
n−1∏

i=3

A[i ]

Ar [1] = A[1] ·
n−1∏

i=2

A[i ]

Ar [0] = A[0] ·
n−1∏

i=1

A[i ]. (3)

In the proposed equation, Ar [i ] is one in two cases. In the
first case, A[i ] is one and all the bits on its left side are zero
while A[i − 1] is zero. In the second case, when A[i ] and
all its left-side bits are zero, A[i − 1] and A[i − 2] are both
one. Having determined the rounding values, using three barrel
shifter blocks, the products Ar × Br , Ar × B , and Br × A are
calculated. Hence, the amount of shifting is determined based
on logAr

2 − 1 (or logBr
2 − 1) in the case of A (or B) operand.

Here, the input bit width of the shifter blocks is n, while their
outputs are 2n.

A single 2n-bit Kogge-Stone adder is used to calculate the
summation of Ar × B and Br × A. The output of this adder
and the result of Ar × Br are the inputs of the subtractor
block whose output is the absolute value of the output of the
proposed multiplier. Because Ar and Br are in the form of 2n ,
the inputs of the subtractor may take one of the three input
patterns shown in Table I. The corresponding output patterns
are also shown in Table I.

The forms of the inputs and output inspired us to conceive
a simple circuit based on the following expression:

out = (P XOR Z) AND ({(P � 1) XOR (P XOR Z)} or

{(P AND Z) � 1}) (4)
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TABLE I

ALL POSSIBLE CASES FOR Ar × Br AND Ar × B + Br × A VALUES

where P is Ar × B + Br × A and Z is Ar × Br . The corre-
sponding circuit for implementing this expression is smaller
and faster than the conventional subtraction circuit.

Finally, if the sign of the final multiplication result should
be negative, the output of the subtractor will be negated in the
sign set block. To negate values, which have the two’s comple-
ment representation, the corresponding circuit based on X̄ + 1
should be used. To increase the speed of negation operation,
one may skip the incrementation process in the negating phase
by accepting its associated error. As will be seen later, the sig-
nificance of the error decreases as the input widths increases.
In this paper, if the negation is performed exactly (approxi-
mately), the implementation is called signed RoBA (S-RoBA)
multiplier [approximate S-RoBA (AS-RoBA) multiplier].

In the case where the inputs are always positive, to increase
the speed and reduce the power consumption, the sign detec-
tor and sign set blocks are omitted from the architecture,
providing us with the architecture called unsigned RoBA
(U-RoBA) multiplier. In this case, the output width of the
rounding block is n + 1 where this bit is determined based on
Ar [n] = A[n − 1] · A[n − 2]. This is because in the case of
unsigned 11x . . . x (where x denotes do not care) with the bit
width of n, its rounding value is 10…0 with the bit width
of n + 1. Therefore, the input bit width of the shifters is
n + 1. However, because the maximum amount of shifting
is n − 1, 2n is considered for the output bit width of the
shifters.

C. Accuracy of RoBA Multiplier

In this section, inaccuracies of the three architectures
discussed above are considered. The inaccuracies of the
U-RoBA multiplier and S-RoBA multiplier, which originate
from omitting the term (Ar − A)× (Br − B) from the accurate
multiplication of A × B , are the same. Hence, the error is

error(A, B) = (Ar − A)(Br − B)

AB
. (5)

Assuming Ar and Br are equal to 2n and 2m , respectively,
the maximum error occurs when A and B are equal to 3 × 2n

and 3 × 2m , respectively. In this case, both Ar and Br have
the maximum arithmetic difference from their corresponding
inputs. Thus

max{error(A,B)} = (2n − 3 × 2n−2)(2m − 3 × 2m−2)

(3 × 2n−2) × (3 × 2m−2)
= 1

9
.

(6)

Therefore, the maximum error for these two architectures is
%11.1̄, which is the same as that of [12].

Fig. 2. Numbers (top numbers) and their corresponding possible round
values.

In the case of the AS-RoBA multiplier, the error includes an
additional term due to the approximate negation (approximate
negation). Therefore, in the worst case (where both inputs are
negative), one may obtain the maximum error from

error(A,B) = ( Ār − Ā)(B̄r − B̄)

AB
+ Ā + B̄+1

AB
. (7)

Compared with (5), the second term comes from the negation
approximation obtained from the following relation:

A × B = ( Ā+1)(B̄+1) = Ā + B̄ + 1 + Ā × B̄ ≈ Ā × B̄

(8)

which shows the error as Ā + B̄ +1. Hence, in the case where
at least one of the inputs is negative, the AS-RoBA multiplier
error is larger than that of the two other RoBA multiplier types.
Also, when both of the inputs are negative, although the final
result will be positive, one still needs to negate the negative
inputs. Based on this formulation, when one of the inputs
is −1, the maximum error, which is 100%, occurs. To reduce
the maximum error of this case, one may use a detector to
identify the case when one of the inputs is −1, and bypass
the multiplication process and generate the output by negating
the other input. It is clear that this solution has some delay
and power consumption overhead.

In addition to the maximum error, the occurrence rate of
the maximum error condition (which we shall simply call the
maximum error rate) is obtained as the ratio of the number
of maximum error occurrences to the total number of outputs.
This error rate is another accuracy measurement parameter.
Here, all the input combinations are assumed to occur. In the
case of n-bit U-RoBA multiplier, there are n − 1 cases
for each input where the rounded value has the maximum
difference to the actual number (see Fig. 2). The maximum
error occurs when these numbers are the input operands.
This corresponds to (n − 1)2 cases. In the case of S-RoBA
multiplier, for each operand, there are 2(n−2) cases where the
rounded operand has the maximum error. Hence, similar to the
U-RoBA multiplier, the maximum error occurs when both of
the rounded operands have the maximum error that makes the
number of maximum error occurrence equal to (2(n − 2))2.
Finally, in the case of the AS-RoBA multiplier, as mentioned
before, the maximum error happens when one of the inputs
is −1. Hence, the number of maximum error occurrences is
equal to 2 × 2n−1 − 1 (2n − 1).

Table II shows the maximum error rates for the three
RoBA multiplier architectures for the input bit width
of 8-, 16-, 24-, and 32-bit multipliers. As the results show,
the rate of the maximum error decreases as the bit length
increases. Also, among the architectures, the AS-RoBA mul-
tiplier has the maximum error rate.

On the other hand, in the cases of the U-RoBA and S-RoBA
multipliers when the absolute value of the input operand of
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TABLE II

MAXIMUM ERROR RATES (%) FOR THE RoBA
MULTIPLIER ARCHITECTURES

TABLE III

PASS RATES (%) FOR THE RoBA MULTIPLIER ARCHITECTURES

TABLE IV

MRE, MED, NMED, MSE, ACCinf , VARIANCE, AND ERROR RATE

OF DIFFERENT 32-bit APPROXIMATE MULTIPLIER DESIGNS

the multiplier is in the form of the 2m , the output result of
the RoBA multiplier is exact [see (5)]. Hence, the numbers
of correct outputs in the cases of the U-RoBA multiplier and
S-RoBA multipliers are 2(n+1)2n −(n+1)2 and n2n+2 −4n2,
respectively. In the case of the AS-RoBA multiplier, when
both inputs are positive, the multiplier behaves similar to the
other two RoBA multiplier architectures, and hence, when
one of the inputs is in the form of 2m , the output is exact.
In addition, there are some other combinations that lead to
the correct output. One example of such cases is (A − AR)
(B̄ − B̄R) + A = 1. Analytically finding all the combinations
with correct (exact) output is extremely difficult, and hence,
for the AS-RoBA multiplier, we use the lower bound of the
correct output number that is equal to n2n − n2.

Next, the passing rates, defined as the ratio of the number
of correct output occurrences to the total number of distinct
outputs [19], for the proposed multiplier architectures are
given in Table III. As the results show, by increasing the bit
width, the rate of correct results is reduced. Compared with the
maximum error, however, the rate at which the correct results
are produced (i.e., the passing rate) is higher. As could be
expected, the AS-RoBA multiplier has the lowest pass rate,
while the pass rate of the S-RoBA multiplier is larger than
the others. It should be noted that the pass rate of the method
proposed in [12] is the same as that of the U-RoBA multiplier.

Table IV shows mean relative error (MRE), mean error
distance (MED), normalized MED (NMED) [21], mean square

TABLE V

PERCENTAGES OF THE OUTPUTS WITH RE SMALLER THAN A SPECIFIC
VALUE FOR DIFFERENT 32-bit APPROXIMATE MULTIPLIER DESIGNS

error (MSE), ACCinf (which measures the error significance
as the Hamming distance) [19], variance, and error rate of
different approximate multiplier designs. For extracting these
metrics, 100K input combinations of inputs were selected from
a uniform distribution. Here, we compare the accuracy of the
proposed multipliers with DSM8 (DSM with a segment size
of 8) [16], DRUM6 (DRUM with a segment size of 6) [17],
the method proposed in [12] (denoted by Mitchell), and the
approximate multiplier proposed in [18] (denoted by HAAM).
Note that, DSM8, DRUM6, Mitchell, and HAAM all are
unsigned multipliers.

As Table IV shows, except for the error rate and ACCinf ,
the DSM8 provides the highest accuracy in terms of all
the error metrics. The minimum error rate belongs to the
HAAM architecture, while the minimum value for ACCinf is
for (A)S-RoBA. Also, the values for U-RoBA, DSM8, and
DRUM6 are almost equal. It should be noted that the accuracy
of the U-RoBA multiplier is slightly smaller than that of
the (A)S-RoBA multiplier. This is due to the smaller range
of the signed numbers compared with that of the unsigned
numbers for the same bit width. In addition, although the accu-
racy of the U-RoBA is smaller than those of the DSM8 and
DRUM6, its delay and energy values are lower.

Finally, the percentages of the outputs with the relative
error (RE) smaller than a specific value for the 32-bit approx-
imate multiplier designs are shown in Table V. They indicate
that the best (the next best) accuracy belongs to DSM8
(DTUM6) whose all of its outputs have REs smaller than 2%
(6%). In the cases of the proposed multipliers in this paper,
almost all of the approximate outputs have RE values smaller
than 10%.

IV. RESULTS AND DISCUSSION

A. Hardware Implementation

To evaluate the efficacy of the proposed multiplier, the three
RoBA multiplier implementations were compared with some
approximate and exact multipliers. Baugh Wooley based on
Wallace tree architecture (as an exact signed) and Wallace (as
an exact unsigned) multipliers were selected as the exact
multipliers. Also, in the case of approximate multipliers,
DSM8 [16], DRUM6 [17], and HAAM [18] were chosen.
Since [12] has not provided any hardware implementation,
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TABLE VI

POSTLAYOUT DESIGN PARAMETERS OF DIFFERENT 32-bit MULTIPLIER DESIGNS

we excluded it from this part of the study. The multipliers were
implemented using Verilog hardware description language and
then synthesized using Synopsys design compiler with the
option of synthesizing with the minimum delay objective
under a 45-nm technology [14]. Next, the postlayout design
parameters of the considered multipliers were extracted by
exploiting Cadence system-on-chip encounter. The extracted
design parameters of these multipliers are reported in Table VI.
It should be mentioned that in this paper, the supply voltage
was 1.1 V (based on the NanGate 45-nm technology [14]),
while the frequency was selected using the reported delay for
each multiplier (see Table VI).

The results reveal that the minimum delay, energy, and
EDP belong to the U-RoBA while DSM8 has the best
power consumption and DRUM8 has the minimum area and
PDA. The delay, energy, and EDP of the U-RoBA are about
22% (15%), 5% (13%), and 26% (25%) lower than those of
DSM8 (DRUM6). In contrast, the power (area and PDA) of
DSM8 (DRUM6) is (are) about 18% (57% and 51%) lower.
Also, the negation operation leads to larger design parameters
for S-RoBA and AS-RoBA compared with those of U-RoBA,
DSM8, and DRUM6. Also, HAAM has the worst design
parameters due to its array structure.

The results also indicate that the exact multipliers have
considerably larger design parameters compared with those
of the proposed U-RoBA and AS-RoBA. In the case of the
S-RoBA multiplier, the delay is, on average, 3.4% larger
than that of the Baugh Wooley multiplier due to the use of
the exact negation operation. Except for the delay parame-
ter, other design parameters of the S-RoBA multiplier are
better than those of the Bough Wooley multiplier. On the
other hand, the power, area, energy, EDP, and PDA of the
S-RoBA multiplier, are about 47%, 32%, 45%, 43%, and 63%,
respectively, lower than those of the Bough Wooley multiplier.

Finally, Table VII shows the breakdown of the power,
delay, and area of different units of both the AS-RoBA and
S-RoBA multipliers. As the results reveal, the shifter unit has
the highest delay, power, and area among the units of the
multipliers.

B. Image Processing Applications

To evaluate the feasibility of the proposed multiplier in
real applications, we compared the performances of the RoBA

TABLE VII

BREAKDOWN OF THE POWER, DELAY, AND AREA OF

AS-RoBA AND S-RoBA

Fig. 3. Image sharpening using the proposed approximate architecture.
(a) Original image. Image sharpening utilizing (b) exact multiplier,
(c) S-RoBA multiplier, and (d) AS-RoBA multiplier.

multiplier architectures in two image processing applications
of smoothing and sharpening with those of the correspond-
ing exact ones. For sharpening, two different methods were
invoked. In the first one, each pixel of the sharp image was
extracted from [15]

Y (i, j) = 2·X (i + m, j + n)− 1

273

2∑

m=−2

2∑

n=−2

X (i +m, j +n)

· MaskSharpening,1(m + 3, n + 3) (9)

where the X (i, j) [Y (i, j)] indicates the pixel of the i th row
and j th column of input (output) image and Masksharpening,1
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TABLE VIII

PSNR AND MSSIM VALUES FOR THE SHARPENING ALGORITHMS WHEN DIFFERENT APPROXIMATE MULTIPLIER STRUCTURES ARE USED

TABLE IX

PSNR AND MSSIM VALUES FOR THE SMOOTHING ALGORITHM WHEN DIFFERENT APPROXIMATE MULTIPLIER STRUCTURES ARE USED

is an n × n coefficient sharpening matrix given by

Masksharpening,1 =

⎡

⎢⎢⎢⎢⎣

1 4 7 4 1
4 16 26 16 4
7 26 41 26 7
4 16 26 16 4
1 4 7 4 1

⎤

⎥⎥⎥⎥⎦
. (10)

In the second method, each output pixel is determined from

Y (i , j) = 1

256

2∑

m=−2

2∑

n=−2

X (i + m, j + n)

· Masksharpening,2(m + 3, n + 3) (11)

where the sharpening matrix is [15]

Masksharpening,2 =

⎡

⎢⎢⎢⎢⎣

−1 −4 −6 −4 −1
−4 −16 −24 −16 −4
−6 −24 476 −24 −6
−4 −16 −24 −16 −4
−1 −4 −6 −4 −1

⎤

⎥⎥⎥⎥⎦
. (12)

In the case of MaskSharpening,1, all the values of the matrix
are positive, and hence, all the three RoBA multiplier archi-
tectures lead to the same results, while in the case of the
Masksharpening,2, both S-RoBA and AS-RoBA multipliers may
be utilized leading to different image qualities.

First, as an example, consider the sharpening described
above for the original image of Vd-Orig shown in Fig. 3.
The sharpened images for the second approach when the
exact multiplier, S-RoBA multiplier, and AS-RoBA mul-
tiplier were used are also given in Fig. 3(b)–(d). As
Fig. 3(b)–(d) reveals, the betterness of the sharpening process
may not be easily recognized by human eyes. Next, we report

the peak signal-to-noise ratio (PSNR) and mean structural
similarity index metric (MSSIM [20]) of the sharpened pic-
tures for the two sharpening matrices for seven images
in Table VIII. It should be noted that the reported PSNRs are
determined based on comparing the sharpened image obtained
using the exact multipliers to the sharpened image obtained
using the considered approximate multiplier structures. Also,
the MSSIM values closer to one indicate higher qualities for
the approximate output image.

As the results show, in the case of the positive numbers,
the average of PSNR (MSSIM) of the proposed multiplier is
more than 43 dB (0.99). Although, in the case of negative num-
bers, the quality of the images is lower, the PSNRs (MSSIM)
in all the cases are more than 20 dB (0.91), which is
acceptable in many applications [15]. In all the benchmarks,
the DSM8 provides the highest output quality providing the
same performance as that of the exact multiplication that
has the PSNR values of ∞. The Mitchell multiplier supports
only the unsigned operation, and hence, its results have been
reported only for the first sharpening algorithm. The results
reveal the lowest quality for this multiplier. Also, our proposed
approximate multiplier yields higher (lower) output PSNR
values compared with those of the DRUM6 in the case of
the first (second) sharpening algorithm.

For the second application of the smoothing, we have
utilized the following equation to determine the smoothed
output image [15]:

Y (i , j) = 1

60

∑2

m=−2

2∑

n=−2

X (i + m, j + n)

· Mask(m + 3, n + 3). (13)
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Here, again X (i, j) [Y (i, j)] is the pixel of the i th row and
j th column of input (output) image and MaskSmoothing is an
n × n coefficient smoothing matrix given by

Masksmoothing =

⎡

⎢⎢⎢⎢⎣

1 1 1 1 1
1 4 4 4 4
1 4 12 4 7
1 4 4 4 4
1 1 1 1 1

⎤

⎥⎥⎥⎥⎦
. (14)

Because every coefficient is positive, all the three RoBA
multiplier architectures lead to the same output image quality.
Table IX shows the PSNR and MSSIM of the smoothing
process using the considered approximate multiplier structures
for the seven images compared with the case of using the exact
multiplier. As the results reveal, all the PSNRs (MSSIMs)
are higher than 40 (0.99) demonstrating small errors for
the proposed multiplier. The output quality of the RoBA
in all the benchmark images is better than those of the
DRUM6 and Mitchell multipliers. However, similar to the
sharpening application, the DSM8 multiplier provides the
highest output quality.

V. CONCLUSION

In this paper, we proposed a high-speed yet energy efficient
approximate multiplier called RoBA multiplier. The proposed
multiplier, which had high accuracy, was based on rounding
of the inputs in the form of 2n . In this way, the computational
intensive part of the multiplication was omitted improving
speed and energy consumption at the price of a small error.
The proposed approach was applicable to both signed and
unsigned multiplications. Three hardware implementations of
the approximate multiplier including one for the unsigned and
two for the signed operations were discussed. The efficiencies
of the proposed multipliers were evaluated by comparing
them with those of some accurate and approximate multipliers
using different design parameters. The results revealed that,
in most (all) cases, the RoBA multiplier architectures out-
performed the corresponding approximate (exact) multipliers.
Also, the efficacy of the proposed approximate multiplication
approach was studied in two image processing applications of
sharpening and smoothing. The comparison revealed the same
image qualities as those of exact multiplication algorithms.
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